
Informatique ICN / ISN

Aide mémoire Javascript

1) Les commentaires
Les commentaires sont les même que ceux de PHP à savoir :
// Deux slash pour un commentaire sur une ligne
/* Un slash et une étoile pour un commentaire
 sur plusieurs lignes...
*/
Les commentaires ne sont pas pris en compte. Ils ne servent que de repères et d'aide pour le codeur du script.

2) Variables
Les variables en JavaScript n'ont pas nécessairement besoin d'être déclarées; mais il est plus correct de le faire :
// Déclaration de la variable nombre
var nombre;
La déclaration de variable se fait avec l'instruction var (variables en anglais (et en français)). Inutile de déclarer
le type de variable (comme le feraient certains adeptes d'ActionScript). On peut immédiatement déclarer une
valeur par défaut (mais cela n'est nullement obligatoire) :
var entier = 5;
var float = 1.999992;
var string = "J'adore wikiversity !";
var boolean = true; // ou false
var object = null;

3) Opérateurs
Tout comme les autres langages, JavaScript dispose d'opérateurs permettant d'effectuer les opérations
informatiques de bases. Voici leur liste :

Opérateurs binaires d'affectation
Comme vu dans les exemples précédents, le symbole "=" (égal) permet d'affecter une valeur (nombre ou
chaîne de caractères) à une variable.
var nombre = 18;
var chaine = "Bonjour tout le monde !";
// Et aussi
var a;
var b;
a = b;
// Et...
a = b = 0; // a et b valent toutes les deux 0

Opérateurs binaires de calcul
• L'addition s'effectue en utilisant le traditionnel symbole "+" (plus)
• La soustraction avec le symbole "-" (moins)
• La multiplication avec le symbole "*" (étoile)
• La division se sert du symbole "/" (slash)

var a = b = c = 2; // On initialise a, b et c
var d = a/(b+c)-a*4; // d = 2/(2+2)-2*4 = 1/2-8 = -7.5
var e = 3*(3+3); // e = 3*6 = 18
Il existe aussi les opérateurs +=, -=, *= et /= qui s'utilisent lorsque l'opération s'effectue sur une seule
variable. Voici un exemple très simple :
var a = 3;
var b = a-2;
a -= b; // a = a-b = 3-1 = 2
a += b; // a = a+b = 3+1 = 4
b *= a; // b = b*a = 1*3 = 3
b /= b; // b = b/b = 1

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 1

Informatique ICN / ISN

Opérateurs de comparaisons
Les opérateurs de comparaison permettent de comparer deux valeurs et renvoient une valeur de type booléen
(true, vrai ou false, faux) selon les cas. La syntaxe est simple à comprendre :
Valeur1 Opérateur de comparaison Valeur2

• > : est strictement supérieur
• < : est strictement inférieur
• >= : est supérieur ou égal

• <= : est inférieur ou égal
• == : est strictement égal
• != : est strictement différent

var a = b = 10;
document.write(a>b); // false
document.write(a>=b); // true
document.write((a+1)>b); // true
document.write(b!=a); // false
document.write(b==a); // true
document.write(b<=a); // true
Bien entendu il ne faut pas confondre l'opérateur "=" d'affectation et l'opérateur "==" de comparaison.

Opérateur de négation
Comme dans l'exemple précédent, il s'agit du point d'exclamation "!". Ainsi, true devient false et vice-versa.
Exemple :
var a = 3;
var b = 5;
document.write(a<b); // affiche true car 3<5
document.write(!(a<b)); // affiche false car l'expression équivaut à a>=b

Concaténation
La concaténation est une technique qui consiste à rassembler deux chaînes de caractères pour n'en former
qu'une seule. C'est en quelque sorte le collage de ces deux chaînes. Pour ce faire, utilisez le signe "+" et "+=".
C'est le même principe que précédemment.
Voici comme vous faisiez avant pour afficher deux chaînes à la suite :
var chaine_a = "Bonjour";
var chaine_b = "tout le monde";

// On affiche les deux chaînes à la suite
document.write(chaine_a);
document.write(chaine_b);
Et bien désormais, vous pouvez faire ainsi :
var chaine_a = "Bonjour";
var chaine_b = "tout le monde";

// On affiche les deux chaînes à la suite avec la concatenation
document.write(chaine_a+chaine_b);
On décline un peu...
var chaine_a = "Bonjour";
var chaine_b = "tout le monde";

chaine_a += chaine_b; // chaine_a vaut Bonjourtout le monde
Notez bien qu'il existe une ambiguïté entre l'opérateur de concaténation et le signe de l'addition en JavaScript.
Cependant, l'interpréteur reconnaît s'il s'agit d'une chaîne (donc concaténation) ou bien d'un nombre
(addition).

Opérateurs d'incrémentation et de décrémentation
Ils sont deux et permettent soit de diminuer de 1 la valeur d'une variable (décrémentation), soit de
l'augmenter de 1 (incrémentation).

• ++ : incrémente de 1
• -- : décrémente de 1

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 2

Informatique ICN / ISN

var a = 0;
a++; // a = a+1 = 0+1 = 1
a--; // a = a-1 = 1-1 = 0
a--; // a = -1
Notez que si vous placez ces opérateurs devant la variable à incrémenter, l'action sera faite immédiatement ;
voici un exemple simple :
var a = 0;
document.write(a++); // Affiche 0
document.write(++a); // Affiche 2
document.write(--a); // Affiche 1

4) Structures conditionnelles

Tests conditionnels avec if et else
Les instructions if et else mettent en place une condition dans le code. Elles permettent de différencier
plusieurs cas lors de l'exécution.
if (condition)
{
 ...
}
else
{
 ...
}

Dans la condition, on se sert généralement des opérateurs de comparaison mais toute fonction renvoyant un
booléen est autorisée.
var age = 15;
if (age >= 18)
{
 document.write("Vous pouvez entrer.");
}
else
{
 document.write("Vous ne pouvez pas entrer.");
}

Notez que ceci est également possible (lorsque le bloc à exécuter ne nécessite qu'une seule ligne) :
var age = 15;
if (age >= 18) document.write("Vous pouvez entrer.");
else document.write("Vous ne pouvez pas entrer.");

On peut aussi rajouter des conditions intermédiaires entre le if et le else qui permettront de tester plus de cas.
Voyez plutôt :
var temps = "orageux";
var je_prends;

if (temps == "ensoleillé") je_prends = "mon parasol.";
else if (temps == "nuageux") je_prends = "mon chapeau.";
else if (temps == "pluvieux") je_prends = "mon parapluie.";
else je_prends = "mon paratonnerre.";

document.write("Lorsque le temps est "+temps+", je prends "+je_prends);
// Lorsque le temps est orageux, je prends mon paratonnerre.

Cet exemple montre comment gérer simplement les conditions multiples en JavaScript.

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 3

Informatique ICN / ISN

Ralier plusieurs conditions

Il est possible de ralier plusieurs conditions en une seule. Évidemment, la précision sera moindre mais cela se
révèle vite incontournable et très pratique. Pour cela il existe deux opérateurs très simples d'utilisation.

• && : il veut dire ET.
• || : il veut dire OU.

Voyons comment cela fonctionne :
var temps = "neigeux";
var temperature = -5;
var je_prends;

if (temps == "neigeux" || temperature <= 0) je_prends = "ma luge ou mon blouson.";
else if (temps == "neigeux" && temperature <= 0) je_prends = "ma luge et mon blouson.";
else je_prends = "mes lunettes de soleil."; // Avec un peu de chance il fait beau :)

document.write("Lorsque le temps est "+temps+" et que la température est de
"+temperature+"{{Abbr|°C|degré Celcius}}, je prends "+je_prends);
// Lorsque le temps est orageux et que la température est de -5{{Abbr|°C|degré Celcius}},
je prends ma luge ou mon gros blouson.

On peut aussi séparer les ET et les OU avec des parenthèses.

L'alternative switch
Il existe une alternative intéressante aux if et else. En effet, lorsque vous avez un nombre important de cas
à vérifier, il peut être intéressant de ne pas avoir à recopier une cascade de else if.
Pour cela, il y a le mot-clé switch :
switch (variable)
{
 case a: /*...*/ break;
 case b: /*...*/ break;
 case c: /*...*/ break;
 default: /*...*/ break;
}
L'instruction switch permet de gérer plusieurs cas en fonction de la valeur d'une variable. Son utilisation,
bien que pratique, est réputée être (un peu) plus lente que le if et surtout assez restreinte.
Exemple :
var temps = "soleil";
var je_prends;

switch (temps)
{
 case "soleil": je_prends = "mon parasol."; break;
 case "nuageux": je_prends = "mon chapeau."; break;
 case "pluvieux": je_prends = "mon parapluie."; break;
 default: je_prends = "mon paratonnerre."; break;
}

document.write("Lorsque le temps est "+temps+", je prends "+je_prends);
// Lorsque le temps est soleil, je prends mon parasol.

Structures ternaires
Derrière ce nom "barbare" se cache un procédé raisonnablement complexe mais surtout très pratique et
permettant de gagner du temps, de la place et de la lisibilité.
Les ternaires sont en fait un concentré d'un groupe if et else (sans else if au milieu). Cela permet
d'écrire une condition en une seule ligne. C'est une alternative aux structures conditionnelles vues
précédemment. Voici la syntaxe :
(condition) ? ...bloc du if : ...bloc du else
Le "?" remplace donc l'accolade du if tandis que les " : " remplacent celle du else. Un code avec if et else :
var age = 15;
if (age >= 18) document.write("Vous pouvez entrer.");
else document.write("Vous ne pouvez pas entrer.");

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 4

Informatique ICN / ISN

Un code avec structure ternaire renvoyant le même résultat :
var age = 15;
document.write((age >= 18) ? "Vous pouvez entrer." : "Vous ne pouvez pas entrer.");
Pratique non ?
Ici, on a mis la condition en ternaire directement dans le document.write (allez faire ça avec un if…)

5) Structures répétitives : les boucles

Une boucle, c'est un bloc d'instructions qui sera répété tant qu'une condition sera vérifiée (= true). Une boucle
peut être finie (elle finira à un moment) ou au contraire infinie (généralement il s'agit d'une erreur de code et
cela finit par faire "planter" le navigateur).

La boucle while
L'instruction while est la boucle la plus simple d'utilisation puisqu'elle ne comporte qu'un seul "argument" :
la condition ! Voici la syntaxe de while :
while (condition)
{
 ... (instructions, incrémentation...)
}
Voici un exemple simple :
var i = 0;
while (i < 5)
{
 document.write("Ligne "+i+"
");
 i++;
}
document.write("Boucle terminée !");

Cela va vous afficher ceci :
Ligne 0 Ligne 1 Ligne 2 Ligne 3 Ligne 4 Boucle terminée !

L'instruction do... while
La boucle do while est la sœur de la boucle while puisqu'il s'agit de la même boucle SAUF que le bloc
d'instruction s'effectuera au minimum une fois et ce même si la condition de la boucle n'est pas vérifiée dès le
début.
Voici un exemple simple :
var i = 5;
do
{
 document.write("Ligne "+i+"
");
 i++;
}
while (i < 5);

document.write("Boucle terminée !");

Ici, la condition vaut false dès le début. Un while normal aurait donc sauté la condition pour passer à la suite
du code. Mais le do while exécute une fois le code et affiche :
Ligne 5
Boucle terminée !

L'instruction for
Cette structure répétitive ne porte pas bien son nom contrairement aux précédentes. Pour faire court, for est
un alias de while à la différence qu'elle regroupe en son sein l'initialisation de(s) variable(s) utilisée(s), la
condition ainsi que l'incrémentation (décrémentation) de celle(s)-ci.

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 5

Informatique ICN / ISN

Syntaxe :
for (initialisation; condition; incrémentation)
{
 ...
}
Exemple :
for (i = 0; i<5; i++)
{
 document.write("Ligne "+i+"
");
}
document.write("Boucle terminée !");
Le résultat est le même que celui de la boucle while. Ceci dit, l'utilisation d'une des trois boucles dépend du
contexte et des besoins du script.

L'instruction break
Il arrive parfois que l'on veuille sortir d'une boucle alors même que la condition de la boucle est encore vraie.
Pour cela, on peut faire appel à l'instruction break. Lorsque cette instruction est exécutée, la boucle se
termine immédiatement et le code la suivant est exécuté.
var i = 1;
while (i <= 10)
{
 if (i == 5) break;
 i++;
}
document.write("La valeur de i est "+i);
Ce qui affiche : La valeur de i est 5. En effet, le programme sort de la boucle lorsque i prend la valeur de 5, donc
après 4 tours.

L'instruction continue
Le rôle de l'instruction continue est de sauter le tour actuel et d'en recommencer un nouveau. Cette
instruction s'utilise exactement de la même façon que break.

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 6

Informatique ICN / ISN

6) Tableaux à indices numériques
Ce sont des tableaux où chaque valeur est associée à un indice (nombre entier positif).

Déclaration
Voici comment déclarer un tableau à indices numériques en JavaScript et lui donner des valeurs initiales :
// première méthode :
var mon_tableau = new Array('Christophe', 'Sarah', 'Carole', 'Alex', 'Nicolas');
// seconde méthode :
var mon_tableau = ['Christophe', 'Sarah', 'Carole', 'Alex', 'Nicolas', 'Sandrine'];

Accès aux valeurs
Pour accéder aux valeurs d'un tableau à indices numériques, la seule possibilité est de passer par l'indice de
chacune des valeurs contenues dans ce tableau. La numérotation des indices commence par 0 (zéro).
document.write(mon_tableau[0]); // Affiche "Christophe"
document.write(mon_tableau[4]); // Affiche "Nicolas"

Listage des valeurs

Pour lister l'intégralité du tableau, il nous faut utiliser une boucle. Il va nous être utile de connaître la
"longueur" du tableau (le nombre d'indice qu'il possède). Pour cela, on fait appel à la méthode length de l'objet
Array. Ainsi, on accède aux valeurs de notre tableau grâce à ses indices comme ceci :
for (i = 0; i <= mon_tableau.length-1; i++)
{
 document.write(i+" => "+mon_tableau[i]); // On affiche chaque couples indice => valeur
}

Affection de valeurs

Pour remplir un tableau avec une seule valeur (13 par exemple), on utilise une boucle.
var a = 13;
var long_tableau = 10;
var mon_tableau = new Array();
for (i = 0; i <= long_tableau; i++)
{
 mon_tableau[i] = a;
}
Il existe des tableaux de tableaux de tableau... (ce sont des tableaux multidimensionnels) :
var mon_tableau = new Array('Christophe', new Array('Sarah', 'Carole', 'Nicolas'));
document.write(mon_tableau[1][0]); // Affiche "Sarah"

Des outils pratiques

Même si nous n'avons pas encore vu comment marchaient les fonctions en JavaScript; il est à savoir que celui-
ci met à disposition des fonctions pour la gestion des tableaux. En voici la liste des principales :

• concat(Tableau1, Tableau2[, Tableau3, ...]) : cette méthode permet de concaténer
(coller) plusieurs tableaux pour n'en former plus qu'un seul.

• join(Tableau) ou Tableau.join() ou Tableau.toString() : renvoie tous les éléments
(valeurs) de Tableau sous forme d'une chaîne de caractères.

• pop(Tableau) ou Tableau.pop() : supprime le dernier élément de Tableau après avoir retourné sa
valeur.

• Tableau.shift() : supprime le premier élément de Tableau après avoir retourné sa valeur.
• Tableau.unshift(valeur1[, valeur2, ...]) : permet d'ajouter des éléments au début.
• Tableau.push(valeur1[, valeur2, ...]) : permet d'ajouter des éléments à la fin de Tableau.
• Tableau.sort() : permet de trier tous les éléments de Tableau.
• Tableau.reverse() : inverse l'ordre des éléments de Tableau.
• Tableau.splice(début, fin, valeur) : écrase les valeurs des éléments dans Tableau dont

l'indice est compris entre début et fin.
• Tableau.slice(début, fin) : retourne les éléments dont l'indice est compris entre fin et début.

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 7

Informatique ICN / ISN

7) Objets
Les objets, omniprésents dans le JavaScript, peuvent être créés afin d'obtenir l'équivalent d'un tableau
associatif, c'est-à-dire lorsque chacune de ses valeurs est associée à un nom.

Déclaration
Pour créer un objet, on peut utiliser les deux syntaxes :
var mon_objet = new Object();
// ou : var mon_objet = {};

Pour attacher le nom à sa valeur, on utilise le signe mathématique égal comme ceci :
mon_objet['prenom_0'] = 'Christophe';
mon_objet['prenom_1'] = 'Sarah';
mon_objet['prenom_2'] = 'Carole';
mon_objet['prenom_3'] = 'Alex';
mon_objet['prenom_4'] = 'Nicolas';
mon_objet['prenom_5'] = 'Sandrine';
Ou on peut les attacher à la création de l'objet :
var mon_object = {
 "prenom_0": 'Christophe',
 'prenom_1': 'Sarah',
 'prenom_2': 'Carole'
};

Accès aux valeurs
Comme précédemment sauf qu'on utilise le nom associé à la variable au lieu de son indice :
document.write(mon_objet['prenom_3']); // Affiche "Alex"

// Ou bien, si la clé respecte la règle concernant la nomination des variables :
document.write(mon_objet.prenom_1); // Affiche "Sarah"

Listage des valeurs

Pour lister les valeurs de l'objet mon_objet ci-dessus, on procède ainsi :

for (var nom_indice in mon_object)
{
 document.write(mon_object[nom_indice]);
}
En effet, la boucle for(...in...) attribue à la variable nom_indice le nom de l'indice et passe au suivant à chaque
itération. Il est à noter que cette méthode permet aussi de lister les noms d'indices si nécessaire.

Affectation de valeurs

Soit directement en utilisant le nom de l'indice:
mon_objet['prenom_3'] = "Alex"
// Ou comme précédemment :
mon_objet.prenom_3 = "Alex"
Soit via la boucle for(...in...) (ici remise à 0 de toutes les valeurs de l'objet)
for (var nom_indice in mon_objet)
{
 mon_objet[nom_indice] = 0;
}

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 8

Informatique ICN / ISN

8) Boîte d'alerte
Il existe une boîte de dialogue qui a pour principal objectif d'alerter le visiteur de quelque chose. Il s'agit de la
boîte d'alerte.
Caractéristiques:

• Nom : alert()
• Boutons : "OK" (et la croix de fermeture)
• Code : window.alert (texte d'alerte);

Le window devant la fonction alert est facultatif. Exemple :
alert('Bonjour, bienvenue sur mon site.\nIl est tout neuf !');
Notez l'emploi du caractère spécial \n pour sauter une ligne dans une alerte JavaScript.

9) Boîte confirmation

JavaScript met aussi a disposition des codeurs une fonction nommée confirm qui permet d'afficher une boîte
de dialogue demandant une confirmation au visiteur. Par exemple : Voulez-vous supprimer tous les messages ?.
Caractéristiques:

• Nom: confirm()
• Boutons : "OK", "ANNULER" (et la croix de fermeture)
• Code : window.confirm(texte de confirmation);

Exemple :
var choix = confirm("Voulez-vous supprimer tous les messages ?");
if (choix) alert("Vous avez cliqué sur OK");
else alert("Vous avez cliqué sur ANNULER ou vous avez fermé");

On comprend donc sur cet exemple que confirm peut renvoyer deux valeurs :
1. TRUE si le visiteur a cliqué sur OK.
2. FALSE si le visiteur a cliqué sur ANNULER ou a cliqué sur la croix rouge de fermeture.

10) Boîte de saisie
C'est la dernière boîte de dialogue que nous allons voir. Celle-ci permet de demander une saisie au visiteur.
Elle contient donc un champs de texte.
Caractéristiques:

• Nom: prompt
• Boutons : "OK", "ANNULER" (et la croix de fermeture)
• Code : window.prompt(texte de demande, valeur par défaut du textfield);

Exemple :
do
{
 choix = prompt("Veuillez entrer un nombre supérieur à zéro :", 0);
}
while (isNaN(choix) || !choix || Number(choix) < 0);
document.write("Le nombre que vous avez entré est : "+choix);

Le code est certes plus compliqué que précédemment mais il est tout à fait compréhensible. Explication :

• En premier lieu, on utilise la boucle do-while car nous voulons être sûr que celle-ci sera parcourue au
moins une fois (on aurait aussi pu initialiser choix à null avant une boucle while simple).

• Dans la boucle, on demande d'entrer un nombre positif via le prompt.
• Ensuite, il y a le while et sa condition : les || veulent dire OU. isNaN (is Not a Number) permet de

vérifier si la saisie est bien un nombre. Puis on vérifie que le visiteur n'a pas cliqué sur ANNULER (!
choix ou choix == false) et enfin, on vérifie que le nombre est supérieur à 0 (avec Number(choix) > 0).

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 9

Informatique ICN / ISN

11) Les fonctions
Premièrement, pour déclarer une fonction il faut le mot clé function suivi du nom de notre fonction sans
caractères spéciaux (pas d'espace, de virgule...). Puis, entre accolades se trouvent les instructions de la
fonction. Une fonction peut posséder des arguments (ou paramètres) qui sont des noms de variable à mettre
entre parenthèses après le nom de la fonction et avant la première accolade et séparés par des virgules.
Pour commencer simplement, nous allons faire une petite fonction qui va simplement afficher la phrase
"Bonjour tout le monde" un certain nombre de fois.
function afficher_phrase (phrase, n) // On déclare la fonction
{
 var term = (parseInt(n) > 1) ? '
' : ''; // Si n > 1, on saute une ligne
 var i = 1; // On démarre i à 1
 do
 {
 document.write(phrase+term);
 i++;
 }
 while (i <= n);
}
Voilà, notre fonction est écrite. Une précision : la fonction parseInt() permet de convertir une chaîne en
un nombre.
Maintenant, comment se servir de notre fonction ?
// Appel à notre fonction
afficher_phrase ("Salut tout le monde", 10); // La phrase sera affichée 10 fois de suite

Retourner une valeur
À présent, créons une fonction de calcul. Et... qui dit calcul dit aussi que nous allons devoir renvoyer une
valeur. Pour cela, il y a le mot clé return qui comme son nom l'indique veut dire "retourner" en anglais. Il est
simplement suivi de la valeur à retourner.
Voici un exemple assez simple se servant de la librairie Math :
function volume_boule (rayon)
{
 return (4/3)*Math.PI*Math.pow(parseInt(rayon), 3);
}

document.write(volume_boule (10)); // On affiche le résultat : 4188.790204786391
Donc, quelques explications :

• return : il sert à retourner le résultat de la formule suivante.
• Math.PI : cela retourne la constante PI (3,14...). C'est une constante.
• Math.pow : il s'agit de la méthode permettant de mettre un nombre à un exposant (ici, le rayon est à

l'exposant 3).
Ici, la fonction volume_boule() est donc de type float puisqu'elle renvoie un nombre décimal.
Cependant, on aurait pu la transformer en fonction void (qui ne retourne aucune valeur) en remplaçant le
return par un document.write() ou un alert().

Valéry Bruniaux source : https://fr.wikiversity.org/wiki/JavaScript 10

